

PII: S0021-8928(03)00116-3

"SOFT" CAPTURE IN PONTRYAGIN'S EXAMPLE WITH MANY PARTICIPANTS[†]

N. N. PETROV

Izhevsk

e-mail: npetrov@udmnet.ru

(Received 26 August 2002)

The conditions of "soft" capture in Pontryagin's example with many participants and equal resources of the players are obtained. © 2003 Elsevier Ltd. All rights reserved.

Pshenichnyi [1] obtained the necessary and sufficient conditions for the capture by a group of pursuers of a single evader in the problem of simple pursuit with equal resources of the players. The only extension of the given problem is Pontryagin's example [2] with many participants and identical dynamic and inertial resources of the players. The problem has already been examined [3] for the case where matching of the phase coordinates is a condition of capture. In the present paper, matching not only of the phase coordinates but also of the velocities is a condition of capture. On the assumption that the roots of the characteristic equation are real and non-positive, sufficient conditions of capture are obtained in terms of the initial positions. For inertial objects, the conditions are obtained for the capture by a group of pursuers of at least one evader, provided that all evaders use the same control. The present paper touches on earlier investigations [2–6].

1. THE CAPTURE OF A SINGLE EVADER

In the space R^k ($k \ge 2$), we consider a differential game Γ of n + 1 persons: n pursuers P_1, P_2, \ldots, P_n and an evader E. The law of motion of each of the pursuers P_i has the form

$$x_i^{(l)} + a_1 x_i^{(l-1)} + \dots + a_l x_i = u_i, \quad u_i \in V$$
(1.1)

The law of motion of the evader E has the form

$$y^{(l)} + a_1 y^{(l-1)} + \dots + a_l y = v, \quad v \in V$$
 (1.2)

Here, x_i, y_i, u_i and $v \in \mathbb{R}^k, a_1, \dots, a_l \in \mathbb{R}^1$, and V is a compactum. When t = 0, the initial conditions

$$x_i^{(\alpha)}(0) = x_{i\alpha}^0, \quad y^{(\alpha)}(0) = y_{\alpha}^0, \quad \alpha = 0, ..., l-1$$

are specified, where $x_{i0}^0 \neq y_0^0$ and $x_{i1}^0 \neq y_1^0$. Here and below, unless otherwise stated, i = 1, 2, ..., n.

Definition 1. In game Γ , "soft" capture occurs if T > 0 and the measurable functions $u_i(t) = u_i(t, x_{i\alpha}^0, y_{\alpha}^0, v_t(\cdot)) \in V$ are such that, for any measurable function $v(\cdot)$, $v(t) \in V$, $t \in [0, T]$, time $\tau \in [0, T]$ and a number $q \in \{1, 2, ..., n\}$ exist such that

$$x_q(\tau) = y(\tau), \quad \dot{x}_q(\tau) = \dot{y}(\tau)$$

Instead of systems (1.1) and (1.2), we will examine the system

$$z_i^{(l)} + a_1 z_i^{(l-1)} + \dots + a_l z_i = u_i - v, \quad u_i, v \in V$$
(1.3)

$$z_i(0) = z_{i0}^0 = x_{i0}^0 - y_0^0, \dots, z_i^{(l-1)}(0) = z_{il-1}^0 = x_{il-1}^0 - y_{l-1}^0$$
(1.4)

†Prikl. Mat. Mekh. Vol. 67, No. 5, pp. 759-770, 2003.

We will denote by φ_q (q = 0, 1, ..., l-1) the solutions of the equation

$$\omega^{(1)} + a_1 \omega^{(l-1)} + \dots + a_l \omega = 0$$

with initial conditions

$$\omega(0) = 0, ..., \omega^{(q-1)}(0) = 0, \quad \omega^{(q)}(0) = 1, \quad \omega^{(q+1)}(0) = 0, ..., \omega^{l-1}(0) = 0$$

Assumption 1. All the roots of the characteristic equation

$$\lambda^{l} + a_{1}\lambda^{l-1} + \dots + a_{l} = 0$$
 (1.5)

are real and non-positive.

We will denote the roots of Eq. (1.5) by $\lambda_1, \ldots, \lambda_s$ ($\lambda_1 < \lambda_2 < \ldots < \lambda_s$), and their multiplicities respectively by k_1, \ldots, k_s .

Lemma 1. Suppose Assumption 1 is satisfied and $\lambda_s = 0$. Then $\varphi_{l-1}(t) \ge 0$, $\dot{\varphi}_{l-1}(t) \ge 0$ for all $t \ge 0$.

Lemma 2. Suppose Assumption 1 is satisfied and $\lambda_s < 0$. Then (1) $\varphi_{l-1}(t) \ge 0$ for all t > 0; (2) a $\tau_0 > 0$ exists such that $\varphi_{l-1}(t) > 0$ $t \in (0, \tau_0)$, $\varphi_{l-1}(t) < 0$, $t \in (\tau_0, \infty)$. The assertions of Lemmas 1 and 2 follow from a well-known result [7, p. 136]. Further, let

$$\xi_i(t) = \sum_{k=0}^{l-1} \varphi_k(t) z_{ik}^0$$

Then ξ_i can be represented in the form

$$\xi_i(t) = \sum_{j=1}^{l-1} e^{\lambda_j t} P_{ji}(t)$$

where P_{ji} are polynomials. We will assume that deg $P_{si} = k_s - 1 = \gamma$ for all *i*, otherwise the pursuers initially achieve satisfaction of the given condition, selecting their controls $u_i(t)$ in a fairly small time segment such that the coefficients of t^{γ} in the polynomials P_{si} are non-zero.

We will consider the case

$$\lambda_s = 0, \quad k_s \ge 2 \tag{1.6}$$

and introduce the notation

$$M(t,\tau) = \min\left\{\frac{\phi_{l-1}(t-\tau)}{t^{\gamma}}, \frac{\dot{\phi}_{l-1}(t-\tau)}{\gamma t^{\gamma-1}}\right\}, \quad R(f,t,\tau) = \sum_{j=1}^{s-1} \frac{e^{\lambda_j(t-\tau)}f_j(t-\tau)}{\gamma (t-\tau)^{\gamma-1}}$$

Lemma 3. Suppose Assumption 1 and condition (1.6) are satisfied. Then, for any T > 0

$$\lim_{t\to\infty}\int_T M(t,\tau)d\tau = \infty$$

Proof. The functions φ_{l-1} , $\dot{\varphi}_{l-1}$ can be represented in the form

$$\varphi_{t-1}(t-\tau) = a_{\gamma}(t-\tau)^{\gamma} [1 + g_1(t-\tau)]$$

$$\varphi_{t-1}(t-\tau) = a_{\gamma} \gamma(t-\tau)^{\gamma-1} [1 + g_2(t-\tau)]$$

where

$$g_1(t-\tau) = \sum_{l=0}^{\gamma-1} \frac{a_l}{(t-\tau)^{\gamma-l}} + R(P, t, \tau), \quad g_2(t-\tau) = \sum_{l=1}^{\gamma-1} \frac{b_l}{(t-\tau)^{\gamma-l}} + R(Q, t, \tau)$$

Suppose $\varepsilon \in (0, 1)$ and $\tau \in [0, \varepsilon t]$. Then $t - \tau \ge (1 - \varepsilon)t$ and

$$|g_{1}(t-\tau)| \leq \sum_{r=1}^{\gamma} \frac{|a_{\gamma-r}|}{t^{r}(1-\varepsilon)^{r}} + \Sigma^{1}(t) = \Delta_{1}(t)$$
$$|g_{2}(t-\tau)| \leq \sum_{r=1}^{\gamma-1} \frac{|b_{\gamma-r}|}{t^{r}(1-\varepsilon)^{r}} + \Sigma^{2}(t) = \Delta_{2}(t)$$

where

$$\Sigma^{k}(t) = \sum_{j=1}^{s-1} e^{\lambda_{j}(1-\varepsilon)t} c_{j}^{k}(t), \quad c_{j}^{1}(t) = \frac{\max_{t \in [0, \varepsilon t]} |P_{j}(t-\tau)|}{t^{\gamma}(1-\varepsilon)^{\gamma}}, \quad c_{j}^{2}(t) = \frac{\max_{t \in [0, \varepsilon t]} |Q_{j}(t-\tau)|}{\gamma t^{\gamma-1}(1-\varepsilon)^{\gamma-1}}$$

Since $\Delta_1(t)$ and $\Delta_2(t) \to 0$ where $t \to \infty$, 9 time T_0 exists such that $|\Delta_1(t)| \le 1/2$ and $|\Delta_2(t)| \le 1/2$ for all $t > T_0$. Therefore

$$\varphi_{l-1}(t-\tau) \geq \frac{1}{2} a_{\gamma}(t-\tau)^{\gamma}, \quad \varphi_{l-1}(t-\tau) \geq \frac{1}{2} a_{\gamma}\gamma(t-\tau)^{\gamma-1}$$

for all $t > T_0$ and $\tau \in [0, \varepsilon t]$.

Hence, for all (t, T) such that $T > T_0$ and $\varepsilon t > T$, the inequality

$$\int_{T}^{t} M(t,\tau) d\tau \ge \int_{T}^{\varepsilon t} M(t,\tau) d\tau \ge \int_{T}^{\varepsilon t} \frac{a_{\gamma}(t-\tau)^{\gamma}}{2t^{\gamma}} d\tau \to \infty \quad \text{when} \quad t \to \infty$$

holds.

Further, let

$$z_i^0 = \lim_{t \to \infty} P_{si}(t)/t^{\gamma}, \quad \lambda(A, v) = \sup\{\lambda | \lambda \ge 0, -\lambda A \cap (V - v) \ne 0\}$$

$$\delta = \inf_{v \in V} \max_i \lambda(z_i^0, v) > 0$$

Assumption 2. The function $\lambda(z_i^0, \upsilon)$ are continuous at all points of the form (z_i^0, υ) for which $\lambda(z_i^0, \upsilon) > 0$.

Lemma 4. Suppose Assumptions 1 and 2 and condition (1.6) are satisfied and $\delta > 0$. Then a time T exists such that, for any admissible function v, a number *i* will be found such that $h_i(T) \le 0$, where

$$h_{i}(t) = 1 - \int_{0}^{T} \beta_{i}(T, \tau, \upsilon(\tau)) d\tau$$

$$\beta_{i}(t, \tau, \upsilon) = \sup\{\lambda | \lambda \ge 0, -\lambda \mathscr{L}(\xi_{i}(t), t) \in \mathscr{L}(\varphi_{l-1}(t-\tau), t)(V-\upsilon)\}$$

$$\mathscr{L}(f(r), t) = \left\| \frac{f(r)/t^{\gamma}}{\dot{f}(r)/(\gamma t^{\gamma-1})} \right\|$$

Proof. Note that

$$\beta_{i}(t,\tau,\upsilon) = \min\left\{\frac{\varphi_{l-1}(t-\tau)}{t^{\gamma}}\lambda\left(\frac{\xi_{i}(t)}{t^{\gamma}},\upsilon\right), \frac{\varphi_{l-1}(t-\tau)}{\gamma t^{\gamma-1}}\lambda\left(\frac{\xi_{i}(t)}{\gamma t^{\gamma-1}},\upsilon\right)\right\}$$

Since

$$z_i^0 = \lim_{t \to \infty} \frac{\xi_i(t)}{t^{\gamma}} = \lim_{t \to \infty} \frac{\dot{\xi}_i(t)}{\varphi_i \tau^{\gamma-1}}$$

a moment T_0 exists such that

$$\max_{i} \lambda \Big(\frac{\xi_{i}(t)}{t^{\gamma}}, v \Big) \geq \frac{\delta}{2}, \quad \max_{i} \lambda \Big(\frac{\dot{\xi}_{i}(t)}{\gamma t^{\gamma-1}}, v \Big) \geq \frac{\delta}{2}$$

for all $t > T_0$ and $v \in V$. We will consider continuous functions h_i , taking into account that

$$h_i(0) = 1, \quad \sum_i h_i(T) \le n - \int_0^T \max_i \beta_i(T, \tau, \upsilon(\tau)) d\tau$$

Suppose $T > T_0$. Then

$$\max_{i}\beta_{i}(T, \tau, \upsilon(\tau)) \geq \frac{\delta}{2}M(T, \tau)$$

and therefore

$$\int_{0}^{T} \max_{i} \beta_{i}(T, \tau, \upsilon(\tau)) d\tau \geq \frac{\delta}{2} \int_{T_{0}}^{T} M(T, \tau) d\tau = g(T)$$

Consequently, $\sum_i h_i(T) \le n - g(T)$. Since $\lim_{T \to \infty} g(T) = +\infty$, a moment T_1 and a number *i* exist such that $h_i(T_1) \le 0$.

Let

$$\hat{T} = \inf\left\{T \ge 0: \inf_{\upsilon(\cdot) \in \Omega(T)} \max_{i} \int_{0}^{T} \beta_{i}(T, \tau, \upsilon(\tau)) d\tau \ge 1\right\}$$

where $\Omega(T)$ is the set of all measurable functions v defined in the segment [0, T] and taking values in V.

By virtue of Lemma 4, $\hat{T} < \infty$.

Theorem 1. Suppose Assumptions 1 and 2 and condition (1.6) are satisfied and $\delta > 0$. Then, in game Γ , "soft" capture occurs.

Proof. Let $\upsilon: [0, \hat{T}] \to V$ be an arbitrary admissible control of the evader E and t_1 be the least positive root of the function h of the form

$$h(t) = 1 - \max_{i} \int_{0}^{t} \beta_{i}(\hat{T}, \tau, \upsilon(\tau)) d\tau$$

Let $\hat{u}_i(\tau)$ be the lexicographic minimum among the solutions of the system

$$-\beta_i(\hat{T},\tau,\upsilon(\tau))\mathscr{L}(\xi_i(\hat{T}),\hat{T}) = \mathscr{L}(\varphi_{l-1}(\hat{T}-\tau),\hat{T})(u-\upsilon(\tau))$$

We set the controls of the pursuers P_i , supposing that $u_i(\tau) = \hat{u}_i(\tau)$. We assume that $\beta_i(\hat{T}, \tau, \upsilon(\tau)) = 0$ when $\tau \in [t_1, \hat{T}]$. Then

$$\begin{aligned} \mathscr{L}(z_i(\hat{T}),\hat{T}) &= \mathscr{L}(\xi_i(\hat{T}),\hat{T}) + \int_0^{\hat{T}} \mathscr{L}(\varphi_{l-1}(\hat{T}-\tau),\hat{T})(u_i(\tau)-\upsilon(\tau))d\tau = \\ &= \mathscr{L}(\xi_i(\hat{T}),\hat{T})h_i(\hat{T}) = \mathscr{L}(\xi_i(\hat{T}),\hat{T})\left(1 - \int_0^{t_1} \beta_i(\hat{T},\tau,\upsilon(\tau))d\tau\right) = 0 \end{aligned}$$

The theorem is proved.

We will consider the case

$$\lambda_s = 0, \quad k_s = 1 \tag{1.7}$$

and introduce the notations

$$M_{1}(t,\tau) = \min\left\{\varphi_{l-1}(t-\tau), \frac{\dot{\varphi}_{l-1}(t-\tau)e^{-\lambda_{s-1}t}}{t^{\mu}}\right\}, \quad \mathcal{L}_{1}(f(r),t) = \left\| \frac{f(r)}{f(r)e^{-\lambda_{s-1}t}/t^{\mu}} \right\|$$

In this case

$$\dot{\varphi}_{l-1}(t) = \sum_{r=1}^{s-1} e^{\lambda_r t} Q_r(t), \quad \xi_i(t) = \sum_{j=1}^{s-1} e^{\lambda_j t} P_{ji}(t) + z_i^0, \quad \dot{\xi}_i(t) = \sum_{j=1}^{s-1} e^{\lambda_j t} Q_{ji}(t)$$

Let deg $Q_{s-1}(t) = \mu$. We assume that $Q_{s-1i}(t) \neq 0$ and deg $Q_{s-1i}(t) = \mu$ for all *i*. Let $z_i^1 = \lim_{t \to \infty} Q_{s-1i}/t^{\mu}$.

Lemma 5. Suppose Assumption 1 and condition (1.7) are satisfied. Then, for any T > 0

$$\lim_{t\to\infty}\int_{T}M_1(t,\tau)d\tau = \infty$$

Proof. The functions φ_{l-1} , $\dot{\varphi}_{l-1}$ can be represented in the form

$$\begin{split} \phi_{l-1}(t-\tau) &= a_{\gamma} + g_1(t-\tau) \\ \dot{\phi}_{l-1}(t-\tau) &= e^{\lambda_{s-1}(t-\tau)} (t-\tau)^{\mu} \lambda_{s-1} b_{\mu} [1+g_2(t-\tau)] \end{split}$$

where

$$g_{1}(t-\tau) = \sum_{j=1}^{s-1} e^{\lambda_{j}(t-\tau)} P_{j}(t-\tau)$$

$$g_{2}(t-\tau) = \sum_{j=1}^{s-2} \frac{e^{(\lambda_{j}-\lambda_{s-1})(t-\tau)} Q_{j}^{1}(t-\tau)}{(t-\tau)^{\mu}} + \sum_{r=0}^{\mu-1} \frac{b_{r}}{(t-\tau)^{\mu-r}}$$

Let $\varepsilon \in (0, 1)$ and $\tau \in [0, \varepsilon t]$. Then $t - \tau \ge (1 - \varepsilon)t$. Therefore, for $g_1(t - \tau)$ and $g_2(t - \tau)$, the inequalities

$$g_i(t-\tau) \leq \Delta_i(t)$$

hold. Here, $\Delta_i(t) \to 0$ when $t \to \infty$. Consequently, a time T_0 exists such that

$$\phi_{l-1}(t-\tau) \ge 1/2a_{\gamma}, \quad \dot{\phi}_{l-1}(t-\tau) \ge 1/2e^{\lambda_{s-1}(t-\tau)}(t-\tau)^{\mu}b_{\mu}\lambda_{s-1}$$

for all $t > T_0$ and $\tau \in [0, \varepsilon t]$. Hence

$$\dot{\varphi}_{l-1}(t-\tau)e^{-\lambda_{s-1}t}/t^{\mu} \ge 1/2(1-\varepsilon)^{\mu}b_{\mu}\lambda_{s-1}$$

and therefore, for all $T > T_0$

$$\int_{T}^{t} M_{1}(t,\tau) d\tau \geq \int_{T}^{\varepsilon t} a d\tau \to \infty \quad \text{when} \quad t \to \infty$$

Further, let

$$\delta = \inf_{v \in V} \max_{i} \{\lambda(z_i^0, v), \lambda(z_i^1, v)\}$$

Assumption 3. The functions $\lambda(z_i^0, \upsilon)$ and $\lambda(z_i^1, \upsilon)$ are continuous at all points (z_i^0, υ) and (z_i^1, υ) such that $\lambda(z_i^0, \upsilon) > 0$ and $\lambda(z_i^1, \upsilon) > 0$.

Lemma 6. Suppose Assumptions 1 and 3 and condition (1.7) are satisfied and $\delta > 0$. Then, for any admissible function v, a time T and a number *i* exist such that $h_i(T) \le 0$, where

$$\beta_i(t,\tau,\upsilon) = \sup\{\lambda | \lambda \ge 0, -\lambda \mathcal{L}_1(\xi_i(t),t) \in \mathcal{L}_1(\varphi_{l-1}(t-\tau),t)(V-\upsilon)\}$$

Proof. From the condition $\delta > 0$ it follows that, for any $\upsilon \in V$, a number *i* exists such that $\lambda(z_i^0, \upsilon) > 0$ and $\lambda(z_i^1, \upsilon) > 0$. By virtue of Assumption 3 and the condition

$$z_i^0 = \lim_{t \to \infty} \xi_i(t), \quad z_i^1 = \lim_{t \to \infty} \dot{\xi}_i(t) e^{-\lambda_{s-1}t} / t^{\mu}$$

a time T_1 exists such that, for all $t > T_1$, the inequality

$$\inf_{v} \min_{i} \{\lambda(\xi_{i}(t), v), \lambda(\dot{\xi}_{i}(t)e^{-\lambda_{s-1}t}/t^{\mu}, v)\} \geq \frac{\delta}{2}$$

holds.

Let $T > T_1$. Then

$$\sum_{i} h_i(T) \le n - \frac{\delta}{2} \int_{T}^{T} M_1(t, \tau) d\tau = n - g(T)$$

According to Lemma 5, $g(T) \rightarrow \infty$ when $T \rightarrow \infty$. Therefore, a time T_0 and a number *i* exist such that $h_i(T_0) \le 0$.

Theorem 2. Suppose Assumptions 1 and 3 and condition (1.7) are satisfied and $\delta > 0$. Then, in game Γ , "soft" capture occurs.

Proof. Let $v: [0, \hat{T}] \to V$ be an arbitrary admissible control of the evader E and t_1 be the smallest positive root of the function h. Let $\hat{u}_i(\tau)$ be the lexicographic minimum among the solutions of the system

$$-\beta_i(\hat{T},\tau,\upsilon(\tau))\mathscr{L}_1(\xi_i(\hat{T}),\hat{T}) = \mathscr{L}_1(\varphi_{l-1}(\hat{T}-\tau),\hat{T})(u-\upsilon(\tau))$$

We set the controls of the pursuers P_i , supposing that $u_i(\tau) = \hat{u}(\tau)$. We assume that $\beta_i(\hat{T}, \tau, \upsilon(\tau)) = 0$ when $\tau \in [t_1, \hat{T}]$. Then

$$\mathcal{L}_{1}(z_{i}(\hat{T}),\hat{T}) = \mathcal{L}_{1}(\xi_{i}(\hat{T}),\hat{T}) + \int_{0}^{T} \mathcal{L}_{1}(\varphi_{i}(\hat{T}-\tau),\hat{T})(u_{i}(\tau)-v(\tau))d\tau =$$

= $\mathcal{L}_{1}(\xi_{i}(\hat{T}),\hat{T})h_{i}(\hat{T}) = \mathcal{L}_{1}(\xi_{i}(\hat{T}),\hat{T})\left(1 - \int_{0}^{t_{1}} \beta_{i}(\hat{T},\tau,v(\tau))d\tau\right) = 0$

The theorem is proved.

Suppose

$$\begin{aligned} \mathcal{L}_{2}(f(r),t) &= \frac{e^{-\lambda_{s}t}}{t^{\gamma}} \left\| \begin{array}{c} f(r) \\ f(r)/\lambda_{s} \end{array} \right\| \\ M_{2}(t,\tau) &= \min\left\{ \frac{\varphi_{l-1}(t-\tau)e^{-\lambda_{s}t}}{t^{\gamma}}, \frac{-\dot{\varphi}_{l-1}(t-\tau)e^{-\lambda_{s}t}}{t^{\gamma}} \right\} \end{aligned}$$

Lemma 7. Suppose Assumption 1 is satisfied and $\lambda_s < 0$ and $\varepsilon \in (0, 1)$. Then, a time T_0 exists such that, for any $T > T_0$

$$\lim_{t\to\infty}\int_{T}^{\varepsilon_{t}}M_{2}(t,\tau)d\tau = \infty$$

Proof. The functions φ_{l-1} , $-\dot{\varphi}_{l-1}$ can be represented in the form

$$\begin{split} \varphi_{l-1}(t-\tau) &= a_{\gamma}(t-\tau)^{\gamma} e^{\lambda_{s}(t-\tau)} (1+g_{1}(t,\tau)) \\ -\dot{\varphi}_{l-1}(t-\tau) &= a_{\gamma}(-\lambda_{s})(t-\tau)^{\gamma} e^{\lambda_{s}(t-\tau)} (1+g_{2}(t,\tau)) \end{split}$$

where

$$g_{1}(t,\tau) = \sum_{j=1}^{s-1} e^{(\lambda_{j}-\lambda_{s})(t-\tau)} \frac{P_{j}(t-\tau)}{(t-\tau)^{\gamma}a_{\gamma}} + \sum_{l=0}^{\gamma-1} \frac{a_{l}}{(t-\tau)^{\gamma-l}}$$
$$g_{2}(t,\tau) = \sum_{j=1}^{s-1} e^{(\lambda_{j}-\lambda_{s})(t-\tau)} \frac{Q_{j}(t-\tau)}{(t-\tau)^{\gamma}a_{\gamma}(-\lambda_{s})} + \sum_{l=0}^{\gamma-1} \frac{b_{l}}{(t-\tau)^{\gamma-l}}$$

Let $\tau \in (0, \varepsilon t)$. Then $t - \tau \ge (1 - \varepsilon)t$, and therefore

$$|g_1(t, \tau)| \leq \Delta_1(t), \quad |g_2(t, \tau)| \leq \Delta_2(t)$$

and here $\Delta_1(t)$ and $\Delta_2(t) \to 0$ when $t \to \infty$.

Consequently, a time T_0 exists such that $|g_1(t, \tau)| \le 1/2$ and $|g_2(t, \tau)| \le 1/2$ for all $t > T_0$ and $\tau \in (0, \varepsilon t)$. Therefore

$$\frac{\varphi_{l-1}(t-\tau)e^{-\lambda_s t}}{t^{\gamma}} \ge \frac{a_{\gamma}(t-\tau)^{\gamma}e^{-\lambda_s t}}{t^{\gamma}}, \quad -\frac{\dot{\varphi}_{l-1}(t-\tau)e^{-\lambda_s t}}{t^{\gamma}} \ge \frac{a_{\gamma}(t-\tau)^{\gamma}e^{-\lambda_s t}(-\lambda_s)}{t^{\gamma}}$$

for all $t > T_0$ and $\tau \in (0, \varepsilon t)$. Let $T > T_0$, $\varepsilon t > T$, $t(1 - \varepsilon) \ge \tau_0$ and $\tau \in (0, \varepsilon t)$. Then

$$\int_{T}^{\varepsilon t} M_2(t,\tau) d\tau \ge \int_{T}^{\varepsilon t} \frac{c(t-\tau)^{\gamma} e^{-\lambda_s t}}{t^{\gamma}} d\tau \to \infty \quad \text{when} \quad t \to \infty$$

Further, let

$$z_i^0 = \lim_{t \to \infty} \xi_i(t) \frac{e^{-\lambda_i t}}{t^{\gamma}}, \quad \delta = \inf_{\upsilon \in V} \max_i \lambda(z_i^0, \upsilon)$$

Note that

$$z_i^0 = \lim_{t \to \infty} \frac{\dot{\xi}_i(t) e^{-\lambda_s t}}{t^{\gamma} \lambda_s}$$

Lemma 8. Suppose Assumptions 1 and 2 are satisfied and $\lambda_s < 0$ and $\delta > 0$. Then a time T exists such that, for any admissible function v, a number i will be found such that $h_i(T) \le 0$, where

$$\beta_i(T, \tau, \upsilon) = \begin{cases} \beta_i^1(T, \tau, \upsilon), & \text{if } T - \tau > \tau_0 \\ 0, & \text{if } T - \tau \le \tau_0 \end{cases}$$

$$\beta_i^1(t, \tau, \upsilon) = \sup\{\lambda | \lambda \ge 0, -\lambda \mathscr{L}_2(\xi_i(t), t) \in \mathscr{L}_2(\varphi_{l-1}(t - \tau), t)(V - \upsilon) \end{cases}$$

(here τ_0 is the positive root of the function $\dot{\varphi}_{l-1}$).

The proof is similar to the proof of Lemma 6.

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and $\lambda_s < 0$ and $\delta > 0$. Then, in game Γ , "soft" capture occurs.

The proof is similar to the proof of the corresponding theorems for $\lambda_s = 0$.

We will denote by intX, riX and coX respectively the interior, relative interior and convex shell of the set $X \subset R^k$.

Example 1. Systems (1.3) and (1.4) have the form

$$\ddot{z}_i = u_i - v, \quad z_i(0) = z_i^0, \quad \dot{z}_i(0) = z_i^1; \quad ||u_i|| \le 1, \quad ||v|| \le 1$$

Then $\lambda_1 = 0$, $k_1 = 2$, $\varphi_0(t) = 1$ and $\varphi_1(1) = t$, and therefore

$$\xi_i(t) = z_i^0 + t z_i^1, \quad \dot{\xi}_i(t) = z_i^1$$

Assertion 1. Suppose $0 \in \text{Intco}\{z_1^1, \dots, z_n^1\}$. Then, in game Γ , "soft" capture occurs.

Example 2. Systems (1.3) and (1.4) have the form

$$z_i^{(3)} + 3\ddot{z}_i + 2\dot{z}_i = u_i - v, \quad ||u_i|| \le 1, \quad ||v|| \le 1$$
$$z_i(0) = z_{i0}^0, \quad \dot{z}_i(0) = z_{i1}^0, \quad \ddot{z}_i(0) = z_{i2}^0$$

Then

$$\lambda_1 = -2, \quad \lambda_2 = -1, \quad \lambda_3 = 0, \quad k_1 = k_2 = k_3 = 1$$

 $\varphi_0(t) = 1, \quad \varphi_1(t) = \frac{1}{2}e^{-2t} - 2e^{-t} + \frac{3}{2}, \quad \varphi_2(t) = \frac{1}{2}e^{-2t} - e^{-t} + \frac{1}{2}$

and therefore

$$\xi_i(t) = e^{-2t} \left(\frac{1}{2} z_{i1}^0 + \frac{1}{2} z_{i2}^0 \right) + e^{-t} (-2z_{i1}^0 - z_{i2}^0) + z_{i0}^0 + \frac{3}{2} z_{i1}^0 + \frac{1}{2} z_{i2}^0$$

We assume

$$z_i^0 = z_{i0}^0 + \frac{3}{2}z_{i1}^0 + \frac{1}{2}z_{i2}^0, z_i^1 = 2z_{i1}^0 + z_{i2}^0$$

We also assume that $z_i^0 \neq 0$ and $z_i^1 \neq 0$.

Assertion 2. Suppose

$$\min_{v} \min_{i} \{\lambda(z_i^0, v), \lambda(z_i^1, v)\} > 0$$

Then, in game Γ , "soft" capture occurs.

2. PURSUIT OF A GROUP OF EVADERS

Suppose the laws of motion of *n* pursuers P_1, \ldots, P_n with controls u_i and of *m* evaders E_1, \ldots, E_m with controls v have the form

$$\ddot{x}_i = u_i, \quad ||u_i|| \le 1, \quad \ddot{y}_j = v, \quad ||v|| \le 1$$
(2.1)

$$x_i(0) = x_i^0, \quad \dot{x}_i(0) = x_i^1, \quad y_j(0) = y_j^0, \quad \dot{y}_j(0) = y_j^1, \quad x_i^0 \neq y_j^0, \quad x_i^1 \neq y_j^1$$
(2.2)

Note that all the evaders use the same control.

Definition 2. In game Γ , "soft" capture occurs if a time T > 0 and measurable functions

 $u_i(t) \ = \ u_i(t, \, x_{i\alpha}^0, \, y_\alpha^0, \, \upsilon_t(\cdot)), \quad \left\|u_i(t)\right\| \le 1$

exist such that, for any measurable function $v(\cdot)$, $||v(t)|| \le 1$, $t \in [0, T]$, a time $\tau \in [0, T]$ and numbers $q \in \{1, 2, ..., n\}$ and $r \in \{1, 2, ..., m\}$ exist such that

$$x_q(\tau) = y_r(\tau), \quad \dot{x}_q(\tau) = \dot{y}_r(\tau)$$

Instead of systems (2.1) and (2.2), we will examine the system

$$\ddot{z}_{ij} = u_i - v, \quad z_{ij}(0) = z_{ij}^0, \quad \dot{z}_{ij}(0) = z_{ij}^1$$
 (2.3)

We will assume that the initial data are such that (a) for any set of indices $I \subset \{1, ..., n\}, |I| \ge k + 1$, the condition

Intco{
$$x_i^1, i \in I$$
} $\neq \emptyset$

holds;

(b) any k vectors from the set $\{x_i^1 - y_j^1, y_s^1 - y_r^1, s \neq r\}$ are linearly independent.

Theorem 4. Suppose

$$\operatorname{Intco}\{x_i^1\} \cap \operatorname{co}\{y_i^1\} \neq \emptyset \tag{2.4}$$

Then, in game Γ , "soft" capture occurs.

Proof. From the conditions of the theorem it follows that $n + m \ge k + 2$. By virtue of a well-known result ([8, Lemma 3]) the sets $I \subset \{1, ..., n\}$ and $J \subset \{1, ..., m\}$ exist such that

"Soft" capture in Pontryagin's example with many participants

$$\operatorname{rico}\{x_i^1, i \in I\} \cap \operatorname{rico}\{y_i^1, j \in J\} \neq \emptyset$$

and |I| + |J| = k + 2. We will assume that

$$I = \{1, ..., q\}, J = \{1, ..., l\}$$

where q + l = k + 2. From a well-known result [8, Lemma 2], the system $\{z_{ij}^1, i \in I, j \in J\}$ forms a positive basis. If |J| = 1, then "soft" capture follows from Assertion 1. We assume that $|J| \ge 2$. Let $c_{\alpha}^{\beta} = y_{\alpha}^1 - y_{\beta}^1$. Then $z_{i\alpha}^1 = z_{i1}^1 + c_1^{\alpha}$ for all $i \in I$, $\alpha \in J$ and $\alpha \neq 1$.

Therefore $\{z_{i1}^1, i \in I, c_1^{\alpha}, \alpha \in J, \alpha \neq 1\}$ from a positive basis. Since $n \ge k + 1$, then $q + \alpha - 1 \in \{q + 1, ..., n\}$ for all $\alpha \in J$ and $\alpha \neq 1$. By a well-known result ([8, Lemma 1]), the system

$$\{z_{i1}^{1}, i \in I, z_{q+\alpha-11}^{1} + \mu c_{1}^{\alpha}, \alpha \in J, \alpha \neq 1\}$$

forms a positive basis. By virtue of Lemma 4 a time T > 0 exists such that, for any admissible function $v(\cdot)$, a number *i* will be found such that

$$1 - \int_{0}^{T} \beta_{i1}(T, \tau, \upsilon(\tau)) d\tau \leq 0$$

where

$$\begin{aligned} \mathcal{L}_{3}(f(r),t) &= \left\| \frac{f(r)}{t} \right\| \\ \beta_{j1}(t,\tau,\upsilon) &= \sup\{\lambda | \lambda \ge 0, -\lambda \mathcal{L}_{3}(\xi_{j1}(t),t) \in \mathcal{L}_{3}((t-\tau),t)(V-\upsilon)\} \\ \xi_{i1}(t) &= z_{i1}^{0} + z_{i1}^{1}t, \quad i \in I \\ \xi_{q+\alpha-11}(t) &= z_{q+\alpha-11}^{0} + (z_{q+\alpha-11}^{1} + \mu c_{1}^{\alpha})t, \quad \alpha \in J, \quad \alpha \neq 1, \quad V = \{\upsilon : \|\upsilon\| \le 1\} \end{aligned}$$

Suppose

$$T_0 = \inf \left\{ T | \inf_{\upsilon(\cdot)} \prod_{j=0}^{T} \beta_{j1}(T, \tau, \upsilon(\tau)) d\tau \ge 1 \right\}$$

 $v(\cdot)$ is an arbitrary control of the evaders and t_1 is the smallest positive root of function h of the form

$$h(t) = 1 - \max_{j} \int_{0}^{t} \beta_{j1}(T_0, \tau, \upsilon(\tau)) d\tau$$

Let $\hat{u}_i(\tau)$ be the lexicographic minimum among the solutions of the system

$$-\beta_{j1}(T_0, \tau, v(\tau))\mathcal{L}_3(\xi_{j1}(T_0), T_0) \in \mathcal{L}_3((T_0 - \tau), T_0)(u - v(\tau))$$

We specify the controls of the pursuers, assuming $u_i(t) = \hat{u}_i(t)$. We also assume that $\beta_{j1}(T_0, \tau, \upsilon(\tau)) = 0$ and $\tau \in [t_1, T_0]$. Then, from the system (2.3) we obtain

$$\dot{z}_{i1}(t) = z_{i1}^{1}h_{i}(t), \quad i \in I$$

$$\dot{z}_{q+\alpha-11}(t) + z_{q+\alpha-11}^{1} + \mu c_{1}^{\alpha} = (z_{q+\alpha-11}^{1} + \mu c_{1}^{\alpha})h_{q+\alpha-1}(t), \quad \alpha \in J, \quad \alpha \neq 1$$
(2.5)

From the definition of T_0 it follows that a value of r exists for which $h_r(T_0) = 0$. If $r \in I$, then, by Theorem 1, in game Γ , "soft" capture occurs. If $h_{q+\gamma-11}(T_0) = 0$ at a certain $\gamma \in J$, $\gamma \neq 1$, then $\dot{z}_{q+\gamma-11}(T_0) = -\mu c_1^{\gamma}$.

We will show that

$$\operatorname{rico}\{\dot{x}_i(T_0), i \in I\} \cap \operatorname{rico}\{\dot{y}_i(T_0), j \in J\} \neq \emptyset$$
(2.6)

Using equality (2.5) and the relation

$$\dot{z}_{i\alpha}(T_0) = \dot{z}_{i1}(T_0) + c_1^{\alpha} = \dot{z}_{i1}(T_0) + z_{i\alpha}^1 - z_{i1}^1$$

for all $\alpha \in J$, $\alpha \neq 1$, we obtain

$$z_{i\alpha}^{1} = \dot{z}_{i\alpha}(T_{0}) - \dot{z}_{i1}(T_{0}) + z_{i1}^{1} = \dot{z}_{i\alpha}(T_{0}) + H_{i1}^{0}\dot{z}_{i1}(T_{0}), \quad H_{i1}^{0} = (1 - h_{i1}(T_{0}))/h_{i1}(T_{0})$$

According to the condition, the system $\{z_{ij}^1, i \in I, j \in J\}$ forms a positive basis, and therefore the system

$$\{\dot{z}_{i1}(T_0)/h_{i1}(T_0), \dot{z}_{i\alpha}(T_0) + H_{i1}^0 \dot{z}_{i1}(T_0), \alpha \in I \setminus \{1\}\}\$$

forms a positive basis. Since $h_{i1}(T_0) \in (0, 1]$, the system $\{\dot{z}_{ij}(T_0), i \in I, j \in J\}$ forms a positive basis. Hence, using a well-known result [8, Lemma 2], we obtain relation (2.6). Since $\dot{z}_{q+\alpha_0-11}(T_0) = -\mu c_1^{\alpha_0}$ and condition (2.6) is satisfied, then, using a well-known result [8, Lemma 4], we obtain

$$\operatorname{rico}\{\dot{x}_i(T_0), i \in I, \dot{x}_{q+\alpha_0-11}(T_0)\} \cap \operatorname{rico}\{\dot{y}_j(T_0), j \in 1, j \in J\} \neq \emptyset$$

Assume $\alpha_0 = 2$. Further, we suppose that

$$I = \{1, 2, ..., q+1\}, j = \{2, ..., l\}$$

For the sets I and J, the condition (2.4) holds, and here the number of evaders participating in the given condition has been reduced by one. Taking T_0 as the initial time, we repeat our reasoning until the number of evaders becomes equal to one. We will have

$$\operatorname{rico}\{\dot{x}_i(\tau), i \in I\} \cap \operatorname{rico}\{\dot{y}_j(\tau), j \in J\} \neq \emptyset$$

at a certain instant $\tau > 0$, and here |I| = k + 1 and |J| = 1. Now, capture follows from Assertion 1. The theorem is proved.

Theorem 5. Suppose

$$\operatorname{Intco}\{x_i^1\} \cap \operatorname{co}\{y_j^1\} \neq \emptyset$$

Then, in game Γ , digression from "soft" capture occurs. The proof follows from a well-known result [9].

This research was supported financially by the Competitive Centre of the Russian Ministry of Education (E02-1.0-100) and the Russian Foundation for Basic Research (03-01-00014).

REFERENCES

- 1. PSHENICHNYI, B. N., Simple pursuit by several objects. Kibernetika, 1976, 3, 145-146.
- 2. PONTRYAGIN, L. S., Selected Scientific Papers, Vol. 2. Nauka, Moscow, 1988.
- 3. PETROV, N. N., Game Theory. Izd. Udmurt. Univers., Izhevsk, 1997.
- 4. CHIKRII, A. A., Conflict-Controlled Processes. Naukova Dumka, Kiev, 1992.
- 5. IVANOV, R. P., The problem of soft capture in differential games with many gaining and one aberrant player. Tr. Mat. Inst. Akad. Nauk SSSR, 1988, 185, 74-83.
- GRIGORENKO, N. L., Mathematical Methods for Controlling Several Dynamic Processes. Izd. MGV, Moscow, 1990.
 PONTRYAGIN, L. S., BOLTYANSKII, V. G., GAMKRELIDZE, R. V. and MISHCHENKO, Ye. F., Mathematical Theory
- 7. PONTRYAGIN, L. S., BOLTYANSKII, V. G., GAMKRELIDZE, R. V. and MISHCHENKO, Ye. F., Mathematical Theory of Optimum Processes. Nauka, Moscow, 1969.
- 8. PETROV, N. N., The controllability of autonomous systems. Differents. Uravneniya, 1968, 4, 4, 606-617.
- 9. VAGIN, D. A. and PETROV, N. N., The problem of the pursuit of a group of strictly coordinated evaders. Izv. Ross. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2001, 5, 75-79.

Translated by P.S.G.